

Alberto Pio Fiori

estabilidade de taludes exercícios práticos

Copyright © 2016 Oficina de Textos

Grafia atualizada conforme o Acordo Ortográfico da Língua Portuguesa de 1990, em vigor no Brasil desde 2009.

Conselho editorial Arthur Pinto Chaves; Cylon Gonçalves da Silva;

Doris C. C. K. Kowaltowski; José Galizia Tundisi;

Luis Enrique Sánchez; Paulo Helene;

Rozely Ferreira dos Santos; Teresa Gallotti Florenzano

Capa e projeto gráfico Malu Vallim
Diagramação Alexandre Babadobulos
Preparação de figuras Letícia Schneiater
Preparação de texto Hélio Hideki Iraha
Revisão de texto Paula Marcele Sousa Martins
Impressão e acabamento Rettec artes gráficas

Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil)

Fiori, Alberto Pio Estabilidade de taludes : exercícios práticos / Alberto Pio Fiori. -- São Paulo : Oficina de Textos, 2016.

Bibliografia ISBN 978-85-7975-244-5

- 1. Geotécnica 2. Mecânica das rochas
- 3. Mecânica dos solos 4. Taludes (Mecânica do solo) Estabilidade I. Título.

16-04836 CDD-624.1513

Índices para catálogo sistemático:

1. Mecânica das rochas e dos solos : Engenharia geotécnica 624.1513

Todos os direitos reservados à Oficina de Textos Rua Cubatão, 798 CEP 04013-003 São Paulo-SP – Brasil tel. (11) 3085 7933

site: www.ofitexto.com.br e-mail: atend@ofitexto.com.br

Prefácio

Os estudos de estabilidade de taludes são abordados sob duas óticas: taludes finitos e taludes infinitos. Os primeiros inserem-se mais apropriadamente no campo da Mecânica das Rochas, e os segundos, no campo da Mecânica dos Solos.

O campo da Mecânica das Rochas é tido, de modo geral, como complexo e mais apropriado para estudos avançados. As maiores dificuldades advêm da heterogeneidade, que é uma característica intrínseca dos maciços rochosos ao se apresentarem como um meio anisotrópico, devido às descontinuidades com propriedades geomecânicas, à permeabilidade e às disposições espaciais diferenciadas, estando na origem de importantes acidentes geotécnicos.

Ao contrário, os maciços terrosos têm sido considerados como meios contínuos, homogêneos e isotrópicos e, por isso, incluídos no campo da Mecânica dos Solos. O adequado conhecimento e equacionamento de questões vinculadas a mecanismos de escorregamento e hidrologia de vertentes são, nesse contexto, de grande utilidade nos estudos de taludes ou vertentes individuais, bem como nas análises de risco de áreas de maiores dimensões.

O conceito de fator de segurança está na base dos cálculos da estabilidade dos taludes finitos e infinitos. Tem como base o critério de ruptura de Coulomb e representa um resultado prático e objetivo na avaliação do movimento potencial de uma massa de rocha ou de solo.

Como professor das disciplinas Mecânica dos Solos e Mecânica das Rochas, considero que há falta de livros-textos em nosso meio voltados para estudantes de graduação e de pós-graduação nessas duas áreas de conhecimento. Há um bom número de livros e artigos científicos disponíveis, com vários graus de aprofundamento, porém a maioria é voltada para especialistas e, frequentemente, com equacionamento matemático complicado. Além disso, não há uniformidade de tratamento matemático, de simbologias utilizadas nem de unidades de medidas, o que dificulta o entendimento.

Isso posto, o presente livro procura abordar os conhecimentos teóricos e as técnicas necessárias para a determinação do fator de segurança de taludes finitos e infinitos sob as diferentes óticas, e o consequente planejamento de medidas corretivas ou mitigatórias. Consubstanciados em cinco capítulos, são aqui enfocados os estudos da estabilidade de taludes infinitos e finitos, a intensidade das chuvas e os escorregamentos e, por último, o uso da projeção estereográfica na análise de escorregamentos planares e de rupturas em cunha. Cada capítulo é examinado do ponto de vista teórico e, no final de cada um, são propostos exercícios práticos com dificuldades crescentes e resolvidos

de forma compreensível, como forma de treinamento de conceitos, de equações e de avaliação do alcance e das limitações dos diferentes enfoques.

Finalmente, cabem alguns comentários acerca das referências bibliográficas. O livro não tem intenção de ser um tratado acadêmico e muito menos um trabalho de referência para pesquisadores, mas, principalmente, um texto com conteúdo prático e básico. As referências foram selecionadas estritamente nas áreas de interesse, porém há uma vasta literatura relevante na Mecânica dos Solos e das Rochas, aqui não referenciada. O propósito deste livro é auxiliar no aprofundamento do conhecimento de uma parte relevante da Mecânica dos Solos e das Rochas de modo a fornecer uma compreensão clara e objetiva dos princípios e técnicas de análise e, ao mesmo tempo, desenvolver um procedimento adequado para a condução dos estudos da estabilidade de taludes.

Alberto Pio Fiori Curitiba, outubro de 2015

1.	Análise da estabilidade de taludes infinitos		
	1.1	Definição	9
	1.2	Talude infinito sem percolação de água	10
	1.3	Taludes infinitos com percolação de água	
		paralelamente à vertente	12
	1.4	Ângulo crítico de inclinação de uma vertente para $c = 0$	13
	1.5	Coesão do solo no plano de ruptura	14
	1.6	Profundidade crítica de uma escavação em solo saturado	14
	1.7	Inclinação crítica de uma vertente saturada	
		considerando-se a coesão	14
	1.8	Taludes infinitos com percolação de água: caso geral	15
	1.9	O fator de segurança e a força sísmica	17
	1.10	Análise da estabilidade de talude infinito com vegetação	19
	1.11	Exemplos práticos: taludes infinitos	24
2.	Análise da estabilidade de taludes finitos		
	2.1	Definição	35
	2.2	Forças atuantes em um bloco de rocha	35
	2.3	Ângulo de fricção e coesão de uma massa rochosa	38
	2.4	Ruptura planar	40
	2.5	Análise da probabilidade de escorregamento	65
	2.6	Exemplos práticos	68
3.	Intensidade de chuva e escorregamentos		
	3.1	Hidrologia de uma vertente infinita	129
	3.2	Transmissividade do solo	130
	3.3	A vertente infinita e a transmissividade do solo	130
	3.4	Deslizamento nas encostas	132
	3.5	Intensidade crítica da chuva	133
	3.6	Altura (h_w) do nível de água e o fator de segurança	134
	3.7	Delimitação das zonas de saturação nas vertentes	135
	3.8	Exemplos práticos	136
4.	Anál	ise de rupturas em cunha	141
	4.1	Análise da ruptura em cunha	141

	4.2	Análise de ruptura em cunha considerando-se	
		a coesão e a pressão de água	145
	4.3	Exemplos práticos	148
5.	Uso	da projeção estereográfica na análise	
	de es	corregamento planar	161
	5.1	Representação do cone de atrito em projeção	
		estereográfica	161
	5.2	Condições para a movimentação de blocos	162
	5.3	Análise dos esforços atuantes no plano potencial	
		de deslocamento	163
	5.4	Exemplo prático	
Refe	rência	s bibliográficas	173

Análise da estabilidade de taludes infinitos

1.1 Definição

Do ponto de vista prático, na concepção de Dunn, Anderson e Kiefer (1980), qualquer talude de grande extensão e com perfis de solos essencialmente do mesmo tipo pode ser considerado infinito. Na análise da estabilidade, o plano de deslizamento é tomado como paralelo à superfície do terreno, estando geralmente posicionado no plano de contato entre a camada superior de solo e o topo da camada de rocha subjacente. Exemplos de taludes infinitos e submetidos a movimentos de massa são mostrados nas Figs. 1.1 e 1.2.

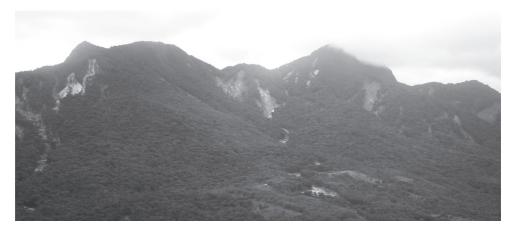


Fig. 1.1 Escorregamentos planares associados a taludes infinitos

Fig. 1.2 Talude infinito afetado por movimentos de massa. O plano de escorregamento situa-se no contato entre o solo e a rocha subjacente

Análise da estabilidade de taludes finitos

2.1 Definição

A designação de talude finito é dada a um talude em que a altura, a base e o topo são definidos. Ao contrário do talude infinito, nesse tipo de talude o plano de deslizamento não é paralelo à superfície do terreno. Estão incluídos nessa categoria os taludes de pedreiras (Fig. 2.1), de estradas de rodagem, vias férreas, barragens etc.

Fig. 2.1 Taludes finitos em área de mineração

2.2 Forças atuantes em um bloco de rocha

A estabilidade de taludes em maciços rochosos depende da resistência ao cisalhamento ao longo do plano em que ocorrerá o deslizamento, com as rochas podendo ser consideradas um material que obedece ao critério de ruptura de Mohr-Coulomb. Nesse modelo, a resistência ao cisalhamento é expressa em termos da coesão c e do ângulo de fricção d0, segundo a equação:

$$\tau = c + \sigma'_n \operatorname{tg} \phi$$

Essa relação representa a equação de uma reta, em que a coesão é representada pelo intercepto da reta no eixo da tensão cisalhante, ou eixo vertical, e o ângulo de fricção, pela inclinação da reta em relação ao eixo da tensão normal, ou eixo horizontal, e σ'_n é a tensão normal efetiva, em que $\sigma'_n = \sigma_n - P_p$. Nessa equação, P_p corresponde à pressão da água, ou pressão de poros.

2.4 Ruptura planar

Esta seção ocupa-se com os métodos de análise da ruptura planar, enfocando taludes finitos e sua aplicação no reforço deles. Um exemplo de ruptura planar em talude finito é mostrado na Fig. 2.4.

Fig. 2.4 Ruptura planar associada a talude finito

A geometria e as condições de água de taludes consideradas nessa análise são definidas com as seguintes condições e geometrias básicas:

- taludes sem fenda de tração;
- taludes com fenda de tração posicionada no topo;
- taludes em que a altura do lençol freático é desconhecida;
- talude com fenda de tração inclinada;
- talude com fenda de tração posicionada na face da vertente;
- talude com fluxo de água subterrâneo desconhecido;
- talude drenado ou seco, mas com fenda de tração;
- talude com presença de água somente na fenda de tração;
- talude com presença de água na fenda de tração e no plano de deslizamento;
- talude saturado e intensa recarga;
- profundidade crítica da fenda de tração;
- talude com topo inclinado e fenda de tração;
- talude com reforço de tirante;
- talude afetado por força sísmica;
- talude com vegetação.

2.4.1 Condições gerais para o escorregamento planar

Para que ocorra o escorregamento planar, algumas condições básicas são necessárias:

- 1. a direção do plano de escorregamento deverá ser aproximadamente paralela à direção do plano do talude, ou seja, dentro de ±20° em relação à direção da face do talude;
- 2. o plano de escorregamento deverá aflorar na face do talude;

E finalmente:

$$B = (1 - \cot g i \operatorname{tg} \theta) \left(\frac{H^2 \cot g i}{2} + H b \right) + \frac{b^2}{2} (\operatorname{tg} i_s - \operatorname{tg} \theta)$$

O peso do material do bloco instável é dado pelo volume B multiplicado pelo peso específico γ do material:

$$P = \gamma \left[(1 - \cot g i \operatorname{tg} \theta) \left(\frac{H^2 \operatorname{cotg} i}{2} + H b \right) + \frac{b^2}{2} (\operatorname{tg} i_s - \operatorname{tg} \theta) \right]$$
 (2.36)

No caso de o topo do talude ser horizontal, tg $i_s = 0$.

A força neutra U atuando na base do plano de escorregamento é dada pela área do triângulo hachurado representado na Fig. 2.18 multiplicada pelo peso específico da água, e, tendo-se ainda em conta a Eq. 2.35, tem-se:

$$U = \frac{\gamma_a Z_w (H + b \operatorname{tg} i_s - Z_o) \operatorname{cosec} \theta}{2}$$
 (2.37)

E a força horizontal V da água na fenda de tração é dada por:

$$V = \frac{\gamma_a Z_w^2}{2} \tag{2.38}$$

2.4.12 Talude com reforço de tirante

Um dos mais eficientes métodos para a estabilização de blocos de rocha ou taludes que apresentam possibilidade de escorregamento é a colocação de tirantes diretamente nos blocos de rocha, fixando-os firmemente ao substrato rochoso em profundidade, ou a construção de muros de arrimo ou cortinas, que, por sua vez, podem ser atirantadas.

Considere-se um volume de solo situado sobre um plano potencial de escorregamento inclinado, conforme representado na Fig. 2.20, e sobre o qual atuam a força neutra U, a força V, devida à presença da água na fenda de tração, e o peso P do bloco. Um tirante tensionado a uma carga T é instalado a um ângulo β com o plano potencial de escorregamento.

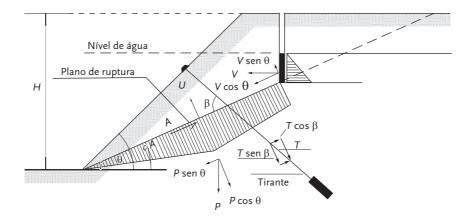


Fig. 2.20 Volume de solo em situação instável reforçado por uma cortina atirantada

Fig. 2.26 Volume de material movimentado

2.6 Exemplos práticos

1. Um levantamento estrutural indicou que a persistência de descontinuidades é de 0,85, e os testes de laboratório na rocha intacta e em amostras de descontinuidades apontaram que o ângulo de atrito e a coesão para a rocha intacta são iguais, respectivamente, a 43° e 250 kPa. O ângulo de fricção nas descontinuidades mostrou ser igual a 28°, e a coesão, igual a 28,5 kPa. Estimar a coesão e o ângulo de fricção do maciço rochoso fraturado.

Solução:

Com os dados do problema, têm-se:

$$p = 0.85$$

 $\phi_r = 43$
 $c_r = 230 \text{ kPa}$
 $\phi_j = 28$
 $c_j = 21.5 \text{ kPa}$

Com base na definição dada na introdução deste capítulo, obtém-se:

$$tg \phi = (1 - p)tg \phi_r + (p)tg \phi_j$$

$$tg \phi = (1 - 0.85) \times tg 43 + 0.85 \times tg 28 = 0.5818$$

E, logo, $\phi = 30,6$.

1 ab. 2.0 Tarametros do exemplo 20			
Altura do talude	H = 180 m		
Inclinação da superfície de ruptura	$\theta = 26$		
Inclinação do talude	i = 45		
Ângulo de atrito da rocha	$\phi_r = 35$		
Coesão da rocha	<i>c</i> _r = 250 kPa		
Ângulo de atrito da junta	φ _j = 28		
Coesão da junta	$c_j = 50 \text{ kPa}$		
Peso específico	$\gamma = 25 \text{ kN/m}^3$		
Profundidade da fenda de tração	$Z_o = 15$		
Altura do nível de água	$H_w = 115 \text{ m}$		

Tab. 2.6 Parâmetros do exemplo 20

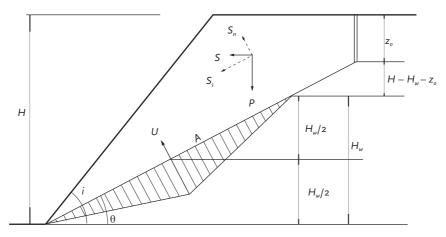


Fig. 2.42 Talude com fenda de tração e atividade sísmica

Solução:

Determinação do peso do bloco instável considerando-se a fenda de tração no topo do talude, sem a força sísmica e a pressão de água mostrada na figura. Não há água na fenda de tração.

$$P = \frac{1}{2} \gamma H^{2} \left\{ \left[1 - \left(\frac{Z_{o}}{H} \right)^{2} \right] \cot \theta - \cot \theta i \right\}$$

$$P = \frac{1}{2} \times 25 \times (180)^{2} \times \left\{ \left[1 - \left(\frac{15}{180} \right)^{2} \right] \times \cot \theta + \cot \theta i \right\}$$

$$P = 405.000 \times \left\{ 0.993 \times \cot \theta + \cot \theta + \cot \theta i \right\}$$

$$P = 405.000 \times 1.036 = 419.606.58$$

Determinação da coesão:

$$c = 0.75c_i + 0.25c_r$$

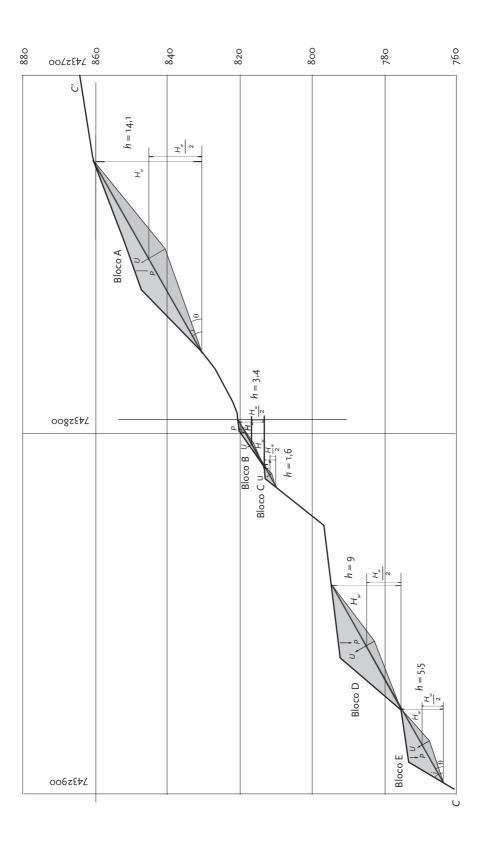


Fig. 2.47 Seção em uma pedreira de gnaisse. Os fatores de segurança dos blocos potencialmente de risco estão indicados na Tab. 2.11

Intensidade de chuva e escorregamentos¹

3

¹N. do Editor: As seções 3.1 a 3.5 foram publicadas originalmente em Fiori (2015), pp. 297-305.

3.1 Hidrologia de uma vertente infinita

O modelo hidrológico da vertente aqui considerado leva em conta o escoamento da água na zona saturada de uma vertente infinita produzido quando o fluxo subsuperficial leva à saturação do solo das partes baixas da vertente; o fluxo superficial é então produzido pelo excesso da chuva que cai sobre o solo saturado e que não mais consegue se infiltrar. O fluxo em uma vertente dividese, portanto, em dois componentes: escoamento superficial e escoamento subsuperficial. Admite-se que o fluxo é direcionado paralelamente à declividade; a espessura do solo e a condutividade hidráulica determinam a capacidade do solo de conduzir a água para jusante através da encosta.

O modelo difere um pouco do fluxo superficial Hortoniano, no sentido de que este considera que a saturação do solo se dá a partir de cima, pela infiltração da água no solo, enquanto o modelo hidrológico da vertente aqui considerado leva em conta que a saturação do solo se dá de baixo para cima, pelo acúmulo do fluxo subsuperficial no sopé da vertente. A água precipitada sobre a bacia de drenagem (ou setor da bacia) se infiltra no solo, e, quando é atingido o grau de saturação, inicia-se o processo de escoamento superficial.

A descarga específica total (q_t) (m/dia) de uma chuva afluente ao canal no sopé de uma vertente é dada pela soma das descargas específicas superficial (q_s) e subsuperficial, ou de base (q_b) . Assim:

$$q_t = q_s + q_b \tag{3.1}$$

Sendo q_s a descarga específica, ou vazão por unidade de área da bacia, pode-se escrever para o escoamento superficial:

$$q_s a = \mu db \tag{3.2}$$

Nessa equação, μ é a velocidade de escoamento, e (d b), a área da seção de descarga do fluxo, sendo d a profundidade e b o comprimento da seção, tomada ao longo de uma curva de nível.

A vazão Q_s de uma chuva em superfície, considerando-se agora uma área de contribuição a da bacia de drenagem, será dada por:

$$Q_{\rm s} = q_{\rm s} a \tag{3.3}$$

Por outro lado, a razão hidrológica (T_m/q_t) indica a facilidade de transmissão do fluxo subsuperficialmente em relação ao escoamento aplicado e, onde essa razão é pequena, o terreno tende à saturação.

3.8 Exemplos práticos

1. Determinar a quantidade de chuva necessária para iniciar a ruptura em uma vertente infinita com vegetação e com 30° de inclinação, sabendo-se que a profundidade do solo é de 3 m, γ_{nat} = 20 kN/m³, σ_a = 5 kN/m²; c_s = 10 kN/m²; $s_r = 5 \text{ kN/m}^2$; $a = 10.000 \text{ m}^2$; b = 100 m; $T_m = 65 \text{ m}^2/\text{dia}$; $\phi = 40$, $\theta = 45 \text{ e } T = 100 \text{ m}$ 4 kN/m. Considerar a pressão do vento σ_{ν_e} como igual a 1,0 kN/m². Qual o período de recorrência de escorregamentos tendo-se em vista que t = 300minutos? Qual o período de recorrência levando-se em conta que a vertente não tenha vegetação? Considerar a equação da chuva do Prado Velho.

Solução:

Tendo-se em vista a Eq. 3.28:

$$q_c = \frac{T_m b \operatorname{sen} i}{a} \left[\frac{c_s + s_r + T(\operatorname{sen} \theta \operatorname{tg} \phi + \cos \theta) - \sigma_{\nu e}}{\gamma_a h \cos i \operatorname{tg} \theta} + \left(1 - \frac{\operatorname{tg} i}{\operatorname{tg} \phi} \right) \left(\frac{\gamma_{nat}}{\gamma_a} + \frac{\sigma_a}{h \gamma_a} \right) \right]$$

E nela se substituindo os valores dados no problema:

$$q_c = \frac{65 \times 100 \times \text{sen } 30}{10.000} \times \left[\frac{10 + 5 + 4 \times (\text{sen } 45 \times \text{tg } 40 + \cos 45) - 1}{10 \times 3 \times \cos 30 \times \text{tg } 40} + \left(1 - \frac{\text{tg } 30}{\text{tg } 40}\right) \times \left(\frac{20}{10} + \frac{5}{30}\right) \right]$$

Donde resulta que $q_c = 0,506$ m/dia ou 21,080 mm/h.

O tempo de recorrência do evento de escorregamento, em função da intensidade da chuva, é determinado pela Eq. 3.30:

$$i = \frac{(3.221,07)T_r^{0,258}}{(t+26)^{1,010}}$$

Substituindo-se os valores fornecidos na equação anterior:

$$21,080 = \frac{(3.221,07)T_r^{0.258}}{(300+26)^{1,010}}$$

Donde resulta que $T_r = 23,601$ anos.

Se a vertente não possuir vegetação, pela substituição dos valores dados na Eq. 3.29 obtém-se:

$$q_c = \frac{T_m b \operatorname{sen} i}{a} \left[\frac{c}{\gamma_a h \cos i \operatorname{tg} \theta} + \frac{\gamma_{nat}}{\gamma_a} \left(1 - \frac{\operatorname{tg} i}{\operatorname{tg} \phi} \right) \right]$$

$$q_c = \frac{65 \times 100 \times \operatorname{sen} 30}{10.000} \times \left[\frac{10}{\cos 30 \times \operatorname{tg} 40} + \frac{20}{10} \times \left(1 - \frac{\operatorname{tg} 30}{\operatorname{tg} 40} \right) \right] = 0,352$$

O valor calculado de q_c = 0,352 m/dia corresponde a 14,66 mm/h. Nesse caso, $T_r = 5,775$ anos.

Os resultados mostram que, para provocar escorregamento em uma vertente vegetada nas mesmas condições geotécnicas que uma vertente não vegetada,

¹N. do Editor: As seções 4.1 e 4.2 deste capítulo foram adaptadas de Fiori (2015), pp. 483-491.

A análise da ruptura em cunha de um talude, em que dois ou mais sistemas de descontinuidades isolam porções da rocha, é um tema bastante complexo. Londe (1971) e Wittke (1973) desenvolveram verdadeiros tratados matemáticos envolvendo a análise bidimensional e tridimensional desse tipo de ruptura. Hoek e Bray (1981) oferecem uma variedade de técnicas para a análise da ruptura em cunha, indo desde um estudo vetorial rigoroso até o uso de ábacos simples, que permitem uma rápida estimativa da estabilidade. A análise rigorosa é complexa do ponto de vista matemático e deve ser usada com o auxílio de um computador, permitindo considerar variações da pressão da água e a coesão ao longo dos planos de escorregamento e, com isso, fornecendo uma avaliação mais precisa do fator de segurança. Um exemplo de ruptura em cunha é mostrado na Fig. 4.1.

Fig. 4.1 Ruptura em cunha

4.1 Análise da ruptura em cunha

A geometria de uma cunha de rocha e sua representação estereográfica são mostradas na Fig. 4.2. Assumindo-se que a força resistente ao movimento é resultante apenas do atrito e que o ângulo de atrito é igual nos dois planos, A e B, sendo A o menos inclinado, o fator de segurança contra escorregamento é dado por:

$$F_{\rm s} = \frac{(R_A + R_B) \operatorname{tg} \phi}{P \operatorname{sen} i} \tag{4.1}$$

Usando-se a fórmula de ângulos duplos:

$$R_A + R_B = \frac{P\cos i \operatorname{sen} \beta \operatorname{sen} 2\left(\frac{\varepsilon}{2}\right)}{\operatorname{sen} \varepsilon \operatorname{sen} \frac{\varepsilon}{2}}$$

E logo:

$$R_A + R_B = \frac{P \cos i \operatorname{sen} \beta}{\operatorname{sen} \frac{\varepsilon}{2}}$$
(4.7)

Substituindo-se essa equação na Eq. 4.1, tem-se, após a simplificação:

$$F_{s} = \left(\frac{\operatorname{sen}\beta}{\operatorname{sen}\frac{\varepsilon}{2}}\right) \left(\frac{\operatorname{tg}\phi}{\operatorname{tg}i}\right) \tag{4.8}$$

A Eq. 4.8 pode ser reescrita da seguinte forma:

$$F_{s} = K \left(\frac{\operatorname{tg} \phi}{\operatorname{tg} i} \right) \tag{4.9}$$

em que F_s é o fator de segurança de uma cunha suportada apenas pelo atrito e (tg ϕ /tg i) representa o fator de segurança para ruptura plana. O fator Ké designado como fator de cunha, sendo:

$$K = \left(\frac{\operatorname{sen}\beta}{\operatorname{sen}\frac{\varepsilon}{2}}\right)$$

O fator de cunha, como pode ser visto na Eq. 4.8, depende do ângulo de abertura e da inclinação da cunha.

4.2 Análise de ruptura em cunha considerando-se a coesão e a pressão de água

Uma análise mais complexa é realizada por Hoek e Bray (1981) para maciços que apresentam coesão nos planos A e B (C_A e C_B), ângulos de atrito diferentes nesses planos (ϕ_A e ϕ_B) e uma distribuição da força neutra, conforme é apresentado na Fig. 4.4, em que a água se infiltra no topo da cunha ao longo das linhas de interseções 3 e 4 dos planos de descontinuidades com o plano do topo do talude e reaparece na face do talude ao longo das interseções 1 e 2 dos planos das mesmas descontinuidades com o plano da face do talude. O máximo da força neutra ocorre ao longo da linha de interseção 5, entre os dois planos de descontinuidades, e é igual a zero ao longo das linhas 1, 2, 3 e 4. Essa distribuição da força neutra representa as condições extremas que deverão ocorrer durante períodos de chuvas mais intensas.

A análise da estabilidade em cunha é facilitada pelo uso de estereograma. A indicação dos planos, a numeração das linhas de interseção dos vários planos e as medidas dos ângulos envolvidos na análise são de extrema importância; a troca desses números implica erros na análise da estabilidade.

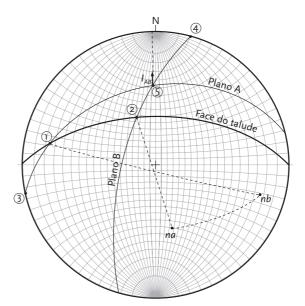


Fig. 4.7 Estereograma para o cálculo do fator de segurança contra escorregamento em cunha. Os polos dos planos A e B são indicados por na e nb, respectivamente. A seta exibe o sentido de movimento da cunha

Tab. 4.4 Folha de cálculo para a determinação do fator de segurança

Dados de entrada	Resultados
$\Psi_a = 40^{\circ}$ $\Psi_b = 70^{\circ}$	$A = \frac{\cos \psi_a - \cos \psi_b \cos \theta_{na.nb}}{\sec \psi_5 \sec^2 \theta_{na.nb}} = 1,370$
$\psi_5 = 37^{\circ}$ $\theta_{na.nab} = 57^{\circ}$	$B = \frac{\cos \psi_b - \cos \psi_c \cos \theta_{na.nb}}{\sin \psi_5 \sin^2 \theta_{na.nb}} = 0,178$
$\theta_{24} = 67^{\circ}$ $\theta_{45} = 41^{\circ}$ $\theta_{2.na} = 73^{\circ}$	$X = \frac{\operatorname{sen} \theta_{24}}{\operatorname{sen} \theta_{45} \cos \theta_{2.na}} = 4,799$
$\theta_{13} = 31^{\circ}$ $\theta_{35} = 100^{\circ}$ $\theta_{1.nb} = 140^{\circ}$	$Y = \frac{\operatorname{sen} \theta_{13}}{\operatorname{sen} \theta_{35} \cos \theta_{1.na}} = 0,683$
$\phi_A = 30^{\circ}$ $\phi_B = 20^{\circ}$	$F_{S} = \frac{3}{\gamma H} \left(C_{A} X + C_{B} Y \right) + \left(A - \frac{\gamma_{a}}{2\gamma} X \right) \operatorname{tg} \phi_{A} + \left(B - \frac{\gamma_{a}}{2\gamma} Y \right) \operatorname{tg} \phi_{B}$
$\gamma = 25,6$ $\gamma_a = 10$ $C_A = 30 \text{ kPa}$	F_s sat = 0,703
$C_B = 35 \text{ kPa}$ H = 30 m	F_s seco = 1,195

2. Em um talude de direção N30W/70NE foi verificada a presença de duas famílias de descontinuidades. Os parâmetros para a análise da estabilidade do talude são apresentados na Tab. 4.5. Determinar o fator de segurança do talude contra escorregamento em cunha.

¹N. do Editor: As seções 5.1 a 5.3 deste capítulo foram publicadas originalmente em Fiori (2015), pp. 501-511.

A facilidade com que as relações tridimensionais podem ser analisadas e manipuladas por meio da projeção estereográfica faz com que ela seja bastante atrativa no estudo de problemas de estabilidade de taludes em rocha. A condição básica para a aplicação desse tipo de projeção no estudo da estabilidade de taludes em rocha é o reconhecimento de que o ângulo de atrito pode ser representado por pequenos círculos na projeção. Se um bloco de rocha tiver liberdade para se movimentar em qualquer direção, a envoltória de todas as forças atuantes nele será um cone cuja geratriz perfaz um ângulo ϕ em torno do polo da superfície. De acordo com a definição de ângulo de atrito ou de fricção (ϕ), um bloco permanecerá em repouso em uma superfície planar se a resultante de todas as forças atuantes nele se afastar da normal à superfície com um ângulo menor que ϕ , ou, em outras palavras, se a resultante das forças ficar posicionada dentro do cone de atrito, como mostra a Fig. 5.1.

5.1 Representação do cone de atrito em projeção estereográfica

A projeção de um cone de atrito em um diagrama de igual ângulo, ou de Wulff, aparece como um círculo de raio ϕ em torno do polo p ou da normal da superfície de escorregamento (Fig. 5.1C). A representação de um círculo na projeção estereográfica é bastante simples, devendo-se inicialmente plotar os dois pontos extremos do diâmetro do círculo (q e r nas Figs. 5.1C e 5.2). A seguir, marca-se o ponto médio do diâmetro e desenha-se o círculo com o auxílio de um compasso. Deve-se tomar o cuidado de não cometer o erro de considerar o polo do plano como o centro do círculo.

Desejando-se, pode-se desenhar o cone através do diagrama de igual área, ou de Schmidt-Lambert, porém isso exige uma técnica mais trabalhosa do que a anterior. Em primeiro lugar, marca-se o polo da superfície de escorregamento. Se o ângulo de atrito ao longo dessa superfície for de ϕ graus, mede-se ϕ graus dos dois lados do polo ao longo do grande círculo que o contém. Gira-se em seguida o papel transparente até que o polo caia sobre um outro grande círculo e medem-se novamente ϕ graus dos dois lados do polo, marcando-se dois novos pontos. O processo continua ao longo de novos grandes círculos até que se obtenha um número suficiente de pontos para desenhar a projeção do cone de atrito. Esse cone não terá a forma de um círculo, como no caso anterior (Fig. 5.1D). Para mais detalhes da projeção estereográfica de cones, recomendam-se as obras de Loczy e Ladeira (1976) e Carneiro (1996).

Estabilidade de taludes: exercícios práticos ilustra, por meio de diversos exercícios, casos de estudo de taludes, oferecendo resoluções passo a passo e explicando como aplicar os principais conceitos de Mecânica dos Solos e das Rochas e das técnicas de análise teóricas e empíricas.

A obra apresenta seções sobre análise da estabilidade de taludes finitos e infinitos, o papel da intensidade de chuvas e os recorrentes escorregamentos. O único livro a tratar de estabilidade de taludes rochosos perante rupturas em cunha e escorregamentos planares, apresenta dois capítulos sobre projeção estereográfica para suporte da análise. Originalmente presentes no livro *Fundamentos de Mecânica dos Solos e das Rochas*, eles são complementados nesta edição com didáticos exercícios resolvidos. Uma referência prática e básica para determinar o fator de segurança de taludes, projetar obras de contenção ou planejar medidas mitigatórias.

Patrocínio:

